Current research programs
Research program:
Circular Economy in the Chemical and Materials Industry
The current consumer economy operates on a linear model of extract-produce-consume-throw away. This yields an economy whose negative externalities grow as demand grows. Circular Economy aims to reduce, reuse, and recycle materials in order to ensure more value is extracted from our use of natural resources. The goal of this research program is to develop innovation roadmaps for the chemical and materials industry that facilitate transitioning to a circular economy.
Research project 1:
Innovation Roadmaps for Circular Plastics
Research project 2:
Circular Chemical Value Chain Design
Research project 3:
Transitioning of Chemical and Materials Industry to Sustainable Circular Enterprise
Bhavik R. Bakshi
Professor
Bhavik Bakshi is the Richard M. Morrow Professor of Chemical and Biomolecular Engineering at The Ohio State University, and the Director of the SE3RG (Sustainable Engineering-Ecosystem-Economic Research Group). He is also on the Faculty Advisory Board of OSU’s Sustainability Institute.
Research program:
Social Value of Innovation and Business for a KAITEKI Future
This research program aims to generate insights about social values in order to help companies orient their innovation and growth to what people will care about in the future. Our motivation is to create knowledge and tools for innovation in science and technology that contributes lasting value to society, as publics, governments, and businesses have increasingly signaled that market success and profit are no longer sufficient for differentiation and success in our global marketplace.
Research project 1:
Social Value for a KAITEKI Future
Research project 2:
Future Social Values in the Smart Environments of 2050
Research project 3:
Future Social Value Toolkit
Research project 4:
Future Social Value Observatory
Research program:
Sustainable Food Systems
This research program focuses its activities at the intersections of health, sustainability, and well-being. It aims to bind the spirit of KAITEKI with real-world food systems issues that affect consumers’ health and lives. As such, the research team advances work along its main areas of interest: (a) consumer level food waste, (b) dietary shifts towards plant-based diets, and (c) COVID-19 and its impact on both food waste and health behaviors.
Research project 1:
Food Waste Reduction
Research project 2:
Dietary Shifts and Well-being for a KAITEKI Future
Research project 3:
Impacts of COVID-19 on Health and Sustainability Behaviors
Research program:
Design, Development and Testing of Innovative Materials for Urban Cooling
To promote advanced technologies to mitigate urban heat island and to simulate impact of infrastructure materials, an integrated study of the design, development and testing of innovative materials for urban cooling was undertaken within the scope of this research program, which includes the following: (a) development and use of computer simulations of urban buildings and urban centers, and (b) a novel approach to asphalt pavement formulation to promote a more durable material with improved thermal properties.
Research project 1:
Modeling and Simulation of Building Materials and Urban Climate
Research project 2:
Innovative Design of Paving Materials using Aerogel Composite (aMBx)
Research program:
Climate Change as a Waste Management Challenge
Since the beginning of the industrial revolution, CO2 from fossil sources has been dumped into the air, raising its concentration from 280 ppm to 415 ppm. The rise in CO2 (2.5 ppm/yr) is still accelerating, even though COVID-19 caused a temporary slowdown. Roughly half of the CO2 persists for centuries in the air making it necessary to limit aggregate emissions rather than the rate of emission. Seamless scientific evidence clearly shows that limiting global warming to 2 °C cannot be achieved without negative emissions. Transforming the world’s energy infrastructure and creating such negative emissions at the necessary scale (on the order of 20 to 40 Gt CO2 per year) requires more than new technologies; it requires social innovation to create a framework that allows and motivates the rapid introduction of new technology, fairly distributes the burden between developed and developing countries, between the present and future generations, and between rich and poor. Our goal is to analyze the strength and weaknesses of a shift to a paradigm that treats CO2 emissions as a waste management problem and to expose stakeholders to this idea. Different groups of climate change stakeholders find a waste management approach more appealing since it cuts through some of the complexity of dealing with carbon dioxide emissions. This approach opens door to a wide range of technological solutions that would be overlooked in the traditional framework of treating carbon as pollution.
Research project 1:
CO2: waste or pollutant?
Research project 2:
Certificates of sequestration
Research project 3:
Closing the carbon loop
Featured Publications
View full list of publications here.
Circular Economy in the Chemical and Materials Industry
Thakker, V., & Bakshi, B. R. (2022). Multi-scale sustainable engineering: Integrated design of reaction networks, life cycles, and economic sectors. Computers & Chemical Engineering, 156, 107578.
https://www.sciencedirect.com/science/article/pii/S0098135421003562
Thakker, V. and Bakshi, B. (2021), “Designing Value-chains of Plastic and Paper Carrier Bags for a Sustainable and Circular Economy”, to be published in ACS Sustainable Chemistry and Engineering.
https://doi.org/10.1021/acssuschemeng.1c05562
Thakker, V. and Bakshi, B. (2021), “Toward sustainable circular economies: A computational framework for assessment and design,” Journal of Cleaner Production, Vol.295
https://www.sciencedirect.com/science/article/abs/pii/S0959652621005734
Social Value of Innovation and Business for a KAITEKI Future
Miller J., McDaniel T., Bernstein MJ. (2020). Aging in Smart Environments for Independence. 2020 IEEE International Symposium on Technology and Society (ISTAS), pp. 115-123, doi: 10.1109/ISTAS50296.2020.9462211.
https://ieeexplore.ieee.org/document/9462211
Miller J., McDaniel T., Bernstein MJ. (2021) Next Steps for Social Robotics in an Aging World. IEEE Technology and Society Magazine, (40)3, p21—23.
https://doi.org/10.1109/mts.2021.3101931
Keeler, L. W., & Bernstein, M. J. (2021). The future of aging in smart environments: Four scenarios of the United States in 2050. Futures, 133, 102830.
https://www.sciencedirect.com/science/article/pii/S0016328721001312
Sustainable Food Systems
Cosgrove, K., & Wharton, C. (2021). Predictors of COVID-19-related perceived improvements in dietary health: Results from a US cross-sectional study. Nutrients, 13(6), 2097.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234783/
Design, Development and Testing of Innovative Materials for Urban Cooling
Anand, J., D.J. Sailor, A. Baniassadi, 2021. “The relative role of solar reflectance and thermal emittance for passive daytime radiative cooling technologies applied to rooftops,” Sustainable Cities and Society
https://doi.org/10.1016/j.scs.2020.102612
Anand, J. and D.J. Sailor, 2021. “Role of pavement radiative and thermal properties in reducing excess heat in cities,” Solar Energy (Special Issue on Multiphysics Performance), Available online Oct. 2021
https://doi.org/10.1016/j.solener.2021.10.056
Alhazmi, M. D.J. Sailor, and J. Anand, 2022. “A New Perspective for Understanding the Actual Anthropogenic Heat Emissions from Buildings,” in press, Energy and Buildings,
https://doi.org/10.1016/j.enbuild.2022.111860.
Obando, C. J. & Kaloush, K. E., 2021. Estimating the Thermal Conductivity of Asphalt Binders. Journal of Testing and Evaluation.
https://doi.org/10.1520/JTE20210208
Climate Change as a Waste Management Challenge
Lackner, K. S., & Azarabadi, H. (2021). Buying down the Cost of Direct Air Capture. Industrial & Engineering Chemistry Research, 60(22), 8196-8208.
https://doi.org/10.1021/acs.iecr.0c04839
Arcusa, S., & Lackner, K. (2022, February 23). Intergenerational equity and responsibility: a call to internalize impermanence into certifying carbon sequestration. OSF. Preprint.
https://doi.org/10.31219/osf.io/b3wkr
Arcusa, S.H., & Sprenkle-Hyppolite, S. (2022, February 23). Snapshot of the Carbon Sequestration Certification Market Ecosystem. OSF. Preprint.
https://doi.org/10.31219/osf.io/fu59w
Participate
Participate in research projects
All members of the ASU community are encouraged to participate in various research and educational activities of The Global KAITEKI Center. To explore existing or potential opportunities, contact Professor George Basile, the Associate Director of the Center, or the corresponding principal investigator of the six research programs.