Drought Proofing the Future?

Conceptualizing short- and long-term water challenges facing the City of Goodyear.

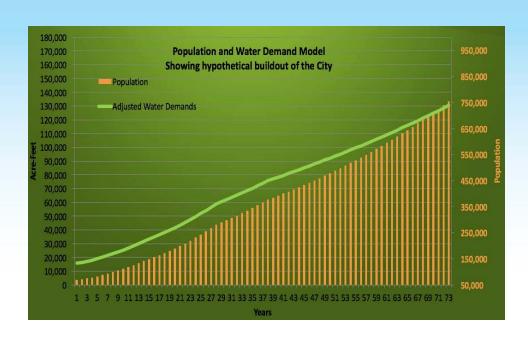
Dylan Bingham Makenna Welsch Sean McElroy

Dr. Nalini Chhetri Mark Holmes

Current and Future Water Challenges

Over reliance on water from the Central Arizona Project and the Colorado River is problematic due to drought, precipitation variability, warming temperatures, and increasing demand.

Groundwater overdraft will also be a challenge, as water is being depleting from the aquifer faster than it can be replenished.

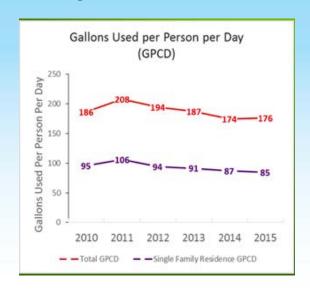

The Colorado River basin extends over seven U.S. states and parts of northwestern Mexico.

Current and Future Water Challenges

Population growth and increases on demand:

Goodyear's build-out population is expected to be 760,000 by 2085.

Consumer demand will exceed the 13,191 acre feet per year of groundwater extraction allowed between 2020 and 2025.



Conservation Analysis

Consumer Education
Conservation classes at the Public Works
Administration Building

Water Conservation Committee

Curtailment Plan (2008)
Updated version is expected for July, 2018

What are the Stages?

NORMAL	NORMAL CONDITIONS	Demand is below 90 % of supply	GOAL: Maintain this usage level
STAGE 1	WATER ADISORY	Demand reaches 90% of supply	GOAL: Reduce demand by 5 %
STAGE 2	WATER ALERT	Demand reaches 95% of supply	GOAL: Reduce demand by 10 %
STAGE 3	WATER WARNING	Demand begins to exceed supply	GOAL: Reduce demand by 15 %
STAGE 4	WATER EMERGENCY		GOAL: Reduce demand to 5 % Below current supply

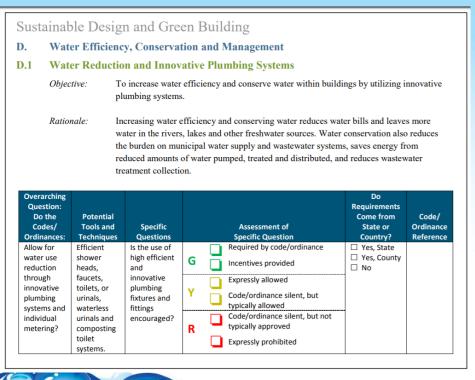
HOA Partnerships

- 98% of Goodyear's residents live in a community with an HOA
- HOA's can be effective for water conservation through regulations and fines

Xeriscaping

- HOA's set the standard for yard appearance
- Xeriscaping = drought-resistant, native plant species and efficient watering
- Homes that converted to xeriscaping in Nevada used 33% less water per month

Pool Covers and Car Washes


- An average pool can lose over 19,000 gallons of water per year due to evaporation
- Pool covers prevent 95% of evaporation when used correctly
 - Rebates could encourage the purchase and use of pool covers
 - HOA's could include monthly car wash pass in their dues
- A ten minute car wash at home with a standard hose can use up to 100 gallons of water
- A conveyor car wash uses about 30-50 gallons and is better for the environment

High-Density Development

- Low-density sprawl results in more impervious material and less water reaching groundwater aquifers
- High-density development is recommended because it:
 - Conserves water
 - Reduces congestion
 - Saves money on and materials for infrastructure
 - Increases walkability
 - Reduces air pollution

Credit: Sustainable Design and Green Building Toolkit

Conservation Implementation Plan

1. Preparation

2. Capacity

3. Community Mobilization

- Interview expert home developers and landscape architects.
 - Focus on future developments.

- Design landscaping design standards.
- between
 Conservation
 Committee and
 HOA's.
- Spur community engagement through education and open house events.
- Asses community vulnerabilities.

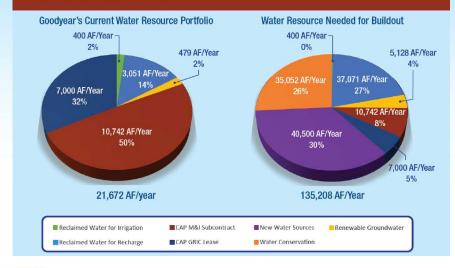
Conservation Implementation Plan

4. Implementation

- Establish new codes and guidelines for developers established by city council.
- Utilize the STAR communities rating system and the Sustainable Design and Green Building Toolkit.

5. Review and Evaluation

- Monitor residential per capita use.
 - Evaluate stakeholder conservation strategies (Water Conservation Committee).



Concluding Remarks

As Goodyear grows and water supplies become increasingly costly and uncertain, steps to reduce water usage even further need to be taken:

- Collaboration and transparency between stakeholders,
- A shift in people's relationship with water that fosters conservation,
- Starting with small changes to achieve longterm transformations.

Goodyear's CURRENT WATER RESOURCE PORTFOLIO is sufficient to support growth to 2040, but additional water resources are needed beyond 2040.

References

City of Goodyear. (2016). City of Goodyear General Plan. Retrieved from http://www.goodyeara z.gov/home/showdocument?id=10645

City of Goodyear. (2017). "Reduce Your Use - Outdoors". Retrieved from http://www.goodyear az.gov/government/departments-divisions-a-z/public-works/water-conservation/watering

City of Goodyear. (2017). "Water Conservation". Retrieved from http://www.goodyearaz.gov/go vernment/public-works/water-services/water-conservation.

City of Goodyear. (2017). "Water Conservation Committee." Retrieved from http://www.goodye araz.gov/government/departments-divisions-a-z/public-works/water-conservation-committee

City of Goodyear. (2017). "Water Curtailment Status." Retrieved from http://www.goodyearaz.

gov/government/departments-divisions-a-z/public-works/water-services/water-conservation/water-curtailment-status

City of Goodyear. (2016). City of Goodyear General Plan. Retrieved from http://www.goodyeara z.gov/home/showdocument?id=10645

City of Goodyear. (2016). 2016 Integrated Water Master Plan. Retrieved from http://www.goody

earaz.gov/home/showdocument?id=16051

City of Goodyear. (2008). Water Conservation and Curtailment Plan. Retrieved from http://www.goodyearaz.gov/ho me/showdocument?id=9426

City of Scottsdale. (2017). "Residential Water Use". Retrieved from http://www.scottsdaleaz.go v/water/residential-water-use

Environmental Protection Agency. (2006). Protecting Water Resources with Higher-Density Development". Retrieved from https://www.epa.gov/sites/production/files/2014-03/documents/protect water higher density1.pdf.

Hirt, Paul, Annie Gustafson, and Kelli Larson. "The Mirage in the Valley of the Sun." Environmental History, Vol. 13, No. 3 (2008): 482-514.

Larson, Kelli L., Annie. Gustafson, and Paul W. Hirt. "Insatiable Thirst and a Finite Supply: An Assessment of Municipal Water-Conservation Policy in Greater Phoenix, Arizona, 1980–2007." *Journal of Policy History* Vol. 21, No. 2 (2009): 107-37.

National Research Council. Colorado River Basin Water Management: Evaluating and Adjusting to Hydroclimatic Variability. The National Academies of Sciences. Division of Earth and Life Studies.

February 01, 2007. Accessed November 10, 2017. http://dels.nas.edu/resour ces/static-assets/materials-based-on-reports/reports-in-brief/colorado_river_management_final.pdf.

Shasta Pools & Spas. (2014). "How to Prevent Pool Water Evaporation in Your Arizona Pool". Retrieved from http://www.shastapools.com/how-to-prevent-pool-water-evaporation-in-y our-arizona-pool/.

STAR Communities. (2016). "STAR Community Rating System; Version 2.0". Retrieved from http://www.starcommunities.org/wp-content/uploads/2016/10/STARV2_RatingSystem_Final1.pdf.

United States. Arizona Department of Water Resources. 2016 Arizona Drought Preparedness Annual Report. Accessed November 01, 2017. http://www.azwater.gov/AzDWR/StatewidePlanning/Drought/documents/2016Report.pdf.

United States Census Bureau. (2015). 2015 Goodyear Special Census.

