

A Most Valuable Accident: Accidental Wetlands Provide Ecosystem Services in an Aridland City

Nancy Grimm¹, Amalia Handler¹, Marina Lauck¹, Monica Palta², Amanda Suchy³ – ¹Arizona State University, Tempe, AZ; ²Pace University, Manhattan, NY; ³Cary Institute of Ecosystem Studies, Millbrook, NY

What are accidental wetlands and what services might they provide?

- Unplanned, unmanaged, forming in low places where water collects (i.e., dry Salt River bed in Phoenix) (Palta et al. 2017).
- In an arid environment, wetlands are cooler, greener, and receive inputs from stormwater, urban base flow, and in some places, treated wastewater. Thus, they have the potential to provide ecosystem services; but also disservices
- Colonized by native and exotic plant species; habitat for diverse bird and herpetofaunas (Banville et al. 2017, Bateman et al. 2015).
- Frequented by people experiencing homelessness (Palta et al. 2016).

ervice	Accidental wetlands as service provider
ater quality modulation*	Removal of pollutants

Heat modulation*

Protection from flooding

Recreation and experience of

Food provision

Sanitation³

Concentration of transported into wetlands pollutants, i.e., metals, pathogens

Disservices associated with accidental wetlands

Cooler than surrounding urban matrix

Potential for gardens, fish Contamination

Capacity to absorb and/or slow down high flows

Water for bathing

Rare ecosystem type in

Habitat for organisms Refuge for native species not otherwise present in urban environment

Contamination: may be dumping grounds

Accessibility, safety

Also habitat for invasive species, pests

How effective are the wetlands in delivering ecosystem services?

- Based upon a rubric for assessing solutions in SETS (socialecological-technological systems), we hypothesize:
- Social low scores on environmental justice, public acceptance; high score on affordability
- Ecological high score on ecosystem-based, co-benefits, intermediate effectiveness
- Technological intermediate score on effectiveness, zero score on technologically advanced
- We primarily evaluate the services listed with an asterix in the table above Ecosystem hased

The Salt River wetlands: structure and function

- Support three main patch types:
 - Vegetated: Typha spp, Ludwigia peploides
 - Unvegetated: open substrates

- · Storms resupply wetlands but a gradient from perennial to ephemeral wetlands exists (above, left)
- Ephemeral wetlands tend to be carbon limited (above, right) whereas perennial wetlands are nitrogen limited

Wetland N cycling

- Wetland nitrogen cycling, measured with a push-pull experiment using isotopically labeled NO₃, exhibits differences among patch types (left) and with [NO₃-] (not shown) NH₄⁺ production and NO₃⁻
- uptake both are highest in Ludwigia patches Both denitrification and
- NH₄⁺ occur in these systems Denitrification is the process that can remove NO₃- from the wetland, thus providing an ecosystem service

dissimilatory nitrate reduction to

Nitrogen and pathogen removal as ecosystem services

Loading of pathogens and NO₃ to wetlands occurs with baseflow and stormwater inputs

E. coli was removed >50% of the time at 3 of the 5 sites during both baseflow and stormflow. However, only 2 of the 5 sites ever met bathing standards, and this only occurred during baseflow Removal of NO₃ occurred frequently, and was high

Presence of wetland plants and hydroperiod both increase the potential for N removal via denitrification

Human use of the wetlands

Heat refuge and sanitation for the homeless

Based on trash surveys and environmental measurements (25 points, 4 sites), and interviews with people using the wetlands:

- >600 trash items
- · Bathing/hygiene items: 100% of points
- Habitation items: 68% of points
- Recreation items: 72% of points
- Water always cooler than air
- Air temperature as much as 6°C lower than in surrounding neighborhood
- Privacy score higher in wetland than neighborhood
- People interviewed cited use of water for bathing, drinking; enjoyment of nature; preference over homeless shelters

officials, NGOs, academics to envision futures for underserved South Mountain Village identified the "Mountain to River"

- theme as providing:
 Sense of place
 - History and identity
 - Connectivity (via washes and corridors)
 - Flood resilience

