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In the United States, around 40% of the total final energy consumption in the 
cities is in the building sector. To lesson greenhouse gas emissions and to slow 
down depletion of non-renewable energy resources, recent years have seen a 
number of studies and initiatives to cut back the building energy consumption. 
Building energy consumption in cities is closely related to environmental 
temperatures, on which irrigation has cooling effects by increasing the supply of 
surface moisture for evapotranspiration. While the objective for agricultural 
irrigation is focused on the yield of produces, irrigation of urban vegetation 
apparently needs a new paradigm.  

 

It is therefore imperative to understand the relationship between water and 
energy consumption in the urban environment to develop an optimal urban 
irrigation scheme. In this study we applied a state-of-the-art urban canopy 
model to identify the environmental impact of urban irrigation in the Phoenix 
metropolitan area. A variety of uncontrolled and controlled irrigation schemes is 
investigated, including (1) daily constant scheme, (2) soil-moisture-controlled 
scheme, and (3) soil-temperature-controlled scheme.  

 

 

 

1. What is the effect of various urban irrigation schemes on building energy 

efficiency for Phoenix? 

 

2. In terms of environmental sustainability, what is the optimal urban 
irrigation scheme? 

  

 

 

 

 

 

Irrigated urban canopy model: 

 Realistic representation  of 

         hydrological processes 

 Sub-facet heterogeneity 

        (impervious surface, bare 

         soil, vegetation) 

 Analytical solutions to heat 

         diffusion equations 

 

 

Investigated urban irrigation schemes: 

 No irrigation 

 Daily constant irrigation 

        (8 pm local time every day ) 

 Soil-moisture-controlled  irrigation 

        (Whenever θtop drops below 0.24) 

 Soil-temperature-controlled irrigation 

        (Whenever Ttop exceeds 38 oC) 

 

 

 

  

 

 

 

 

Problem Statement 

Research Questions 

Experimental Design Model Evaluation 

Effect of Various Urban Irrigation Schemes 

  

 Irrigating mesic landscape in urban areas cools the urban 
environment via enhanced evapotranspiration 

 The soil-temperature-controlled irrigation is the most 
efficient in reducing annual building energy consumption and 
the combined energy-water cost.  

 The total saving of the soil-temperature-controlled scheme 
requires a fine balance in energy-water use. Site-specific 
analysis is therefore required to determine the optimal 
activating soil temperatures 
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  Irrigation scheme 

No 

irrigation 

Daily 

constant 

Soil-moisture-

controlled 

Soil-temperature-

controlled 

Water usage (gal 

m-2) 0 273.5 287.1 412.9 

Energy 

consumption 

(kWh m-2) 1405.8 1335.7 1336.3 1321.5 

Annual total cost 

($ m-2) 151.29 143.28 143.32 142.18 

Optimal Temperature for Irrigation Activation 


