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INTRODUGCTION RPESULTS Patch types showed substantial within-site variation in CO,, N,O, and CH,
_ _ o o fluxes during Winter 2013 (Figs. 1 & 2).
Increasing atmospheric carbon dioxide (CO,) concentration is a well-known ) CO,
effect of fossil-fuel burning, but sources of methane (CH,) and nitrous oxide | e S ® Generally, CO, emissions were highest within all patch types compared to CH,
(N,O) are less well understood. Cities are potential hot spots for greenhouse : ; and N,O (Fig. 1 & 2).
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gas (GHG) production. We sought to investigate GHG fluxes in terrestrial and F 11 TN
aquatic urban patch types around the Phoenix metropolitan region. . AL I ' R i | i “ ﬂ ! ii I | ® Some patch types demonstrated uniformly low (e.g., xeriscaped landscape) or
) ' I I 1,' | A || ig [ | I 1 || ' ﬂ l| high (e.g., canals) emissions of all three gases (Fig. 1 & 2).
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Al IESTIANS 11 ; e ® Other patch types, like turf grass and wetlands, had high emissions of one
\.QJ == J\)J J;\) — A e s e T F R B R E P E T T E " FE 5 trace gas (e.g., CH,) and not another (e.g., CO,) (Figs. 1 & 2).
Q1: How are emissions of CO,, CH,, and N,O distributed across the urban S e N,0 o . . . .
landscape? Z T T T ] Flooded xeric sites (retention basins, washes) tended to be unresponsive or
pe: B 000 T B had higher emissions in "wet” chambers. Mesic flooded sites tended to have
Q2: Are aquatic/semi-aquatic/episodically aquatic ecosystems hot spots for the ER : higher GHG emissions in “dry” chambers (Fig. 1).
production of these gases? 8"
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Q3: What physical and/or chemical variables contribute to GHG production? ) I R Y P P P AT A b al . co,
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We collected GHG samples for two seasons (March and June) from three patch CH, I | 5 } 2 - " o
types; terrestrial, aquatic, and periodically flooded. TSR, R 2 ‘m ” m i | I 0 . u %
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® Gas samples were taken from chambers designed to trap soil gas : 1 [ ﬂ i [ : ! 'I'qzl :i "o 2
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® Periodically flooded sites were experimentally manipulated by wetting the I | 4 | | | ! : 0.002 -
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We collected soil samples from each terrestrial chamber. Figure 1. Emissions of CO,, N,O, and CH, in periodically flooded patch types during % oo R é 10.0025
® Soils were analyzed for soil moisture, temperature, percent organic matter, Winter 2013. We sampled three replicate patches of each patch type. Bars represent = . CH, 0
_ _ _ _ _ one standard error of the mean. n : O CH4
and extractable inorganic nitrogen (summer only) using KCI extraction O gois ¥ P ) .
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1 *w e N,O _- ® The subset of data for winter and summer generally shows higher emissions of
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UCCEINGS S Retention Basin = Mesic £ . I Jf g ‘ . e o= E Em ﬂ | ® Winter emissions data suggest a possible positive relationship between soil-
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e %0 B g T s extractable inorganic N and CO, and CH, flux (Fig. 4).
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Sunokes- Retention Basin — Xeric A ® Patterns suggest that heterogeneity in urban design inherently results in spatial
T | ’ } variation in GHG emissions.
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