Hierarchical Spatial Modeling of Multiple Soil Nutrients in

Heterogeneous Patches of Land Use

- by Anandamayee Majumdar, Arizona State University

(With Jason Kaye, Corinna Gries, Alexander Buyantuyev, Diane Hope, Nancy Grimm)

Land-use map of Phoenix 2000

- Org C energy available for soil food webs.
- •Inorg C longterm water and salt balances.
- •Soil stores a large fraction of global C
- •Nutrient pool sizes affect plant productivity
- ·Soils are a sink for anthropogenic nutrient pollution

Dependent variables: Tot N(TN), Organic C(OC), Inorganic C(IOC), Phosphorous(P)

egressor variables: Spatial in nature. Include a host of bio-physical and socio-economic covariates

Regressors significant in our model:

land-use, 0-1 variable whether ever in agriculture, %lawn, % impervious area, elevation

Landuse types: Urban residential, Urban non-residential, mixture, Agricultural, Water, Desert etc (8 categories)-200 samples

Hierarchical Modeling: Used when parameters are connected by some way of the problem. Usually when one wants to model latent processes. In our problem, we use hierarchy as a way to reduce dimensionality of the multivariate spatial structure.

multiple regression, ANOVA, no attempt to integrate all land-use or patial structure, no attempt to model ssociation of soil nutrients, no issue f prediction or model comparison

we generated values at 5000 new points. The surface maps are

Real and Predicted Surfaces of log(Tot N) and log(Org C)

Confidence interval of Correlation between Real and Median Predictions: log (Tot N log(Org C) under Hierarchical Spatial, Hierachical Non-spatial, Non-hierarchical Spatial, and Non-hierarchical Non spatial Models

Multivariate Spatial structure, Heterogeneity of land-use patches, dimensionality, model comparison, missing data layers needed for prediction at new points.

